Abstract
Water uptake is a seminal process in seed germination. Salt and polyethylene glycol (PEG) are known to retard seed germination rates and percentages, which is often attributed to osmotic effects. Here, we quantified water uptake in wheat seeds killed with a hot needle, finding evidence of three distinct water uptake pools. The fast pool was unaffected by salt, and likely represents cell walls and other apoplastic material. Water uptake into the medium and slow pools was slowed by salt addition, with the medium pool thought to be cellular, while the slow pool is presumably related to endosperm hydration. Salt caused a minor decrease in the water uptake rates and maximum seed water content, while PEG strongly suppressed both parameters. Seeds transferred between water and salt solutions followed the water uptake trajectories of the solution into which they were transferred. Seeds transferred from PEG to water achieved final seed water contents similar to water control seeds, while seeds transferred from water to PEG achieved significantly higher final water contents than PEG controls. This work confirms that salt and PEG have distinct effects on water uptake by wheat seeds.
Funder
Japan Society for the Promotion of Science
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献