Below-Plant Mirrors Improve Serianthes Seedling Survival and Growth in Shade

Author:

Marler Thomas E.1ORCID

Affiliation:

1. Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines

Abstract

Recruitment failures of Serianthes nelsonii are among the threats to this species’ recovery, yet adaptive management research to understand the causes of seedling mortality is lacking. Insufficient available light in the in situ forest floor is one factor that may be involved, and below-plant reflection of incident light may improve seedling survival. Mirrors were placed beneath S. nelsonii, Serianthes grandiflora, and Serianthes kanehirae seedlings in container nursery conditions and S. grandiflora seedlings in a closed-canopy forest to determine the influence of the additional reflected light on seedling survival and growth. Below-plant mirrors increased nursery seedling survival for S. nelsonii and S. kanehirae, with 75% combined survival without mirrors and 88% combined survival with mirrors. Below-plant mirrors increased stem height by 51% for the three species, with greater stem diameter and ending leaf number also occurring for plants with mirrors. Below-plant mirrors increased S. grandiflora seedling survival to 161% and longevity to 236% compared to plants without mirrors under forest cover. The plants receiving mirrors also increased by 175% in height, 60% in stem diameter, and 117% in leaf number compared to the plants without mirrors. These findings indicate that passive solar engineering by exploiting below-plant light reflection may be used as a Serianthes conservation protocol to improve seedling survival and growth under shaded conditions.

Publisher

MDPI AG

Reference32 articles.

1. United States Fish and Wildlife Service (1987). Determination of endangered status for Serianthes nelsonii Merr. (Hayun lagu or Tronkon Guafi). Fed. Regist., 52, 4907–4910.

2. Wiles, G., and Williams, E. (2017). Serianthes nelsonii. IUCN Red List Threatened Species, International Union for Conservation of Nature (IUCN).

3. United States Fish and Wildlife Service (1994). Recovery Plan for Serianthes nelsonii, USFWS.

4. Number of emerged seedlings and seedling longevity of the non-recruiting, critically endangered Håyun lågu tree Serianthes nelsonii Merr. (Fabales: Leguminosae) are influenced by month of emergence;Marler;J. Threat. Taxa,2015

5. Extreme wind events influence seed rain and seedling dynamics of Guam’s Serianthes nelsonii Merr;Marler;Trop. Conserv. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3