Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations

Author:

Bahrami HazhirORCID,Homayouni SaeidORCID,Safari Abdolreza,Mirzaei SayehORCID,Mahdianpari MasoudORCID,Reisi-Gahrouei Omid

Abstract

Remote sensing data are considered as one of the primary data sources for precise agriculture. Several studies have demonstrated the excellent capability of radar and optical imagery for crop mapping and biophysical parameter estimation. This paper aims at modeling the crop biophysical parameters, e.g., Leaf Area Index (LAI) and biomass, using a combination of radar and optical Earth observations. We extracted several radar features from polarimetric Synthetic Aperture Radar (SAR) data and Vegetation Indices (VIs) from optical images to model crops’ LAI and dry biomass. Then, the mutual correlations between these features and Random Forest feature importance were calculated. We considered two scenarios to estimate crop parameters. First, Machine Learning (ML) algorithms, e.g., Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGB), were utilized to estimate two crop biophysical parameters. To this end, crops’ dry biomass and LAI were estimated using three input data; (1) SAR polarimetric features; (2) spectral VIs; (3) integrating both SAR and optical features. Second, a deep artificial neural network was created. These input data were fed to the mentioned algorithms and evaluated using the in-situ measurements. These observations of three cash crops, including soybean, corn, and canola, have been collected over Manitoba, Canada, during the Soil Moisture Active Validation Experimental 2012 (SMAPVEX-12) campaign. The results showed that GB and XGB have great potential in parameter estimation and remarkably improved accuracy. Our results also demonstrated a significant improvement in the dry biomass and LAI estimation compared to the previous studies. For LAI, the validation Root Mean Square Error (RMSE) was reported as 0.557 m2/m2 for canola using GB, and 0.298 m2/m2 for corn using GB, 0.233 m2/m2 for soybean using XGB. RMSE was reported for dry biomass as 26.29 g/m2 for canola utilizing SVR, 57.97 g/m2 for corn using RF, and 5.00 g/m2 for soybean using GB. The results revealed that the deep artificial neural network had a better potential to estimate crop parameters than the ML algorithms.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3