Root Fungal Endophytes and Microbial Extracellular Enzyme Activities Show Patterned Responses in Tall Fescues under Drought Conditions

Author:

Panke-Buisse KevinORCID,Cheng LiangORCID,Gan Huijie,Wickings Kyle,Petrovic Marty,Kao-Kniffin JennyORCID

Abstract

Plant response to water stress can be modified by the rhizosphere microbial community, but the range of responses across plant genotypes is unclear. We imposed drought conditions on 116 Festuca arundinacea (tall fescue) accessions using a rainout shelter for 46 days, followed by irrigation, to stimulate drought recovery in 24 days. We hypothesized that prolonged water deficit results in a range of phenotypic diversity (i.e., green color index) across tall fescue genotypes that are associated with distinct microbial taxonomic and functional traits impacting plant drought tolerance. Microbial extracellular enzyme activities of chitinase and phenol oxidase (targeting chitin and lignin) increased in rhizospheres of the 20 most drought tolerant genotypes. Lower rates of fungal (dark septate) endophyte root infection were found in roots of the most drought tolerant genotypes. Bacterial 16S rRNA gene and fungal ITS sequencing showed shifts in microbial communities across water deficit conditions prior to drought, during drought, and at drought recovery, but was not patterned by drought tolerance levels of the plant host. The results suggest that taxonomic information from bacterial 16S rRNA gene and fungal ITS sequences provided little indication of microbial composition impacting drought tolerance of the host plant, but instead, microbial extracellular enzyme activities and root fungal infection results revealed patterned responses from drought.

Funder

National Science Foundation

New York State Agriculture and Markets

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3