Ethylene Regulates Combined Drought and Low Nitrogen Tolerance in Wheat: Proteomic Analysis

Author:

Yan Jiji12,Wang Daoping2,Kang Shuyu1,He Zhang2,Li Xin2,Tang Wensi2,Chen Kai2,Pan Yinghong2,Zhou Yongbin2,Xu Zhaoshi2ORCID,Chen Jun2,Ma Youzhi2,Chen Ming2,Pang Chunhua13

Affiliation:

1. College of Life Sciences, Shanxi Normal University, Taiyuan 030031, China

2. State Key Laboratory for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, The Ministry of Agriculture and Rural Affairs, Beijing 100081, China

3. Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China

Abstract

Wheat is a staple crop in China’s arid and semi-arid regions. Drought and low nitrogen (LN) are two major constraints to wheat growth and production. However, the molecular mechanism underlying wheat response to both drought and LN stress remains unknown. Accordingly, we conducted a proteomic study on the roots of two wheat varieties, Chang6878 (drought tolerant) and Shi4185 (drought sensitive) and compared the differences between drought and combined drought and LN stress treatments. In total, 5143 proteins were identified, of which 163 differentially abundant proteins (DAPs) were uniquely upregulated under drought and LN stress in Chang6878. Enrichment analysis showed that DAPs were mainly involved in mitogen-activated protein kinase signaling, phenylpropanoid biosynthesis, glutathione metabolism, ethylene biosynthesis, ethylene signal transduction, and oxidation–reduction reactions. These DAPs were verified via parallel reaction monitoring and quantitative real-time polymerase chain reaction. Chang6878 was treated with the ethylene synthesis precursor 1-aminocyclopropanecarboxylic acid, and its resistance to drought and LN stress improved. After treatment with the ethylene synthesis inhibitor silver nitrate and ethylene signal transduction inhibitor 1-methylcyclopropene, drought and LN stress resistance reduced. These results provide novel insights into the tolerance mechanisms of Chang6878 to drought and LN stress by altering ethylene synthesis and signal transduction. This study provides a reference for breeding drought- and low-nitrogen-tolerant wheat germplasm resources and a theoretical basis for maintaining food security in arid, barren areas.

Funder

National Key Research and Development Program of China

Henan Provincial Science and Technology Research and development Program Joint Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3