A Little Helper: Beneficial Bacteria with Growth-Promoting Mechanisms Can Reduce Asian Soybean Rust Severity in a Cell-Free Formulation

Author:

Buttrós Victor HugoORCID,Araújo Neílton Antônio FiusaORCID,D’Ávila Vinícius de Abreu,Pereira Maysa Mathias Alves,Melo Dirceu de Sousa,Pasqual Moacir,Dória JoyceORCID

Abstract

Growth-promoting bacteria are already used in sustainable agricultural systems in Brazil. The market is dominated by inoculants and biological pesticides, which do not reach the full potential of this tool in the agricultural sector. This study aimed to evaluate four bacterial strains for the presence of growth promotion mechanisms, as well as the reduction of Asian rust severity in soybean plants and its effects on three antioxidant enzymes during pathogenesis. The plants were treated using the bacterial cells and/or their biosurfactants before inoculation of the pathogen (IOP). Severity was measured based on a diagrammatic scale at 14, 18 and 21 days after IOP, and the activities of the enzymes SOD, CAT, and APX were evaluated 21 days after IOP. Treatments containing only bacterial cells were not efficient in reducing the severity, with losses of leaf area reaching 15%, while the addition of biosurfactants led to a result that is similar to the biofungicide, based on Bacillus subtilis (Serenade®). The presence of direct growth promotion mechanisms can be observed in all isolates, as well as the role of bacterial metabolites, especially lipopeptides, in the biological control of diseases and the modulation of the plant’s immune response.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3