α-Tocopherol Foliar Spray and Translocation Mediates Growth, Photosynthetic Pigments, Nutrient Uptake, and Oxidative Defense in Maize (Zea mays L.) under Drought Stress

Author:

Ali Qasim,Tariq Javed Muhammad,Haider Muhammad ZulqurnainORCID,Habib Noman,Rizwan MuhammadORCID,Perveen Rashida,Ali ShafaqatORCID,Nasser Alyemeni Mohammed,El-Serehy Hamed A.,Al-Misned Fahad A.

Abstract

A pot experiment was conducted to assess the induction of drought tolerance in maize by foliar-applied α-tocopherol at early growth stage. Experiment was comprised two maize cultivars (Agaiti-2002 and EV-1098), two water stress levels (70% and 100% field capacity), and two α-tocopherol levels (0 mmol and 50 mmol) as foliar spray. Experiment was arranged in a completely randomized design in factorial arrangement with three replications of each treatment. α-tocopherol was applied foliary at the early vegetative stage. Water stress reduced the growth of maize plants with an increase in lipid peroxidation in both maize cultivars. Contents of non-enzymatic antioxidants and activities of antioxidant enzymes increased in studied plant parts under drought, while the nutrient uptake was decreased. Foliary-applied α-tocopherol improved the growth of both maize cultivars, associated with improvements in photosynthetic pigment, water relations, antioxidative mechanism, and better nutrient acquisition in root and shoot along with tocopherol contents and a decrease in lipid peroxidation. Furthermore, the increase of tocopherol levels in roots after α-Toc foliar application confers its basipetal translocation. In conclusion, the findings confer the role of foliar-applied α-tocopherol in the induction of drought tolerance of maize associated with tissue specific improvements in antioxidative defense mechanism through its translocation.

Funder

King Saud University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3