Affiliation:
1. CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
The formation of soil inorganic carbon in saline–alkali lands is of great significance for enhancing soil carbon sequestration. As for the formation mechanisms, in addition to the discovered abiotic mechanisms, the microbial mechanisms remain unclear. To address this, soil microbes were isolated from the saline–alkali farmland of the Yellow River Delta in north China. Then, their capacity for carbonate precipitation formation was determined. Ten microbial strains were obtained from the soil. Of these, seven strains (four bacterial strains and three fungal strains), belonging to Rhodococcus sp., Pseudomonas sp., Bacillus sp., Streptomyces sp., Aspergillus sp., Cladosporium sp., and Trichoderma sp., formed carbonate precipitates in the range of 89.77~383.37 mg. Moreover, the formation of carbonate precipitates was related to specific metabolisms by which microbes can raise the pH (from 7.20 to >8.00), suggesting that soil microbes that can enhance pH values by specific metabolisms containing the function of carbonate formation. Although an in situ experiment is needed to confirm such capacity, these results showed that soil bacteria and fungi existing in the saline–alkali farmland soil can form carbonate precipitates. The present study provided a microbial perspective for the mechanism of soil inorganic carbon formation, further implying a microbial potential of soil carbon sequestration in saline–alkali farmlands.
Funder
National Natural Science Foundation of China
Shandong Provincial Natural Science Foundation
Strategic Priority Research Program of Chinese Academy of Sciences
Subject
Agronomy and Crop Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献