Effects of Freezing–Thawing Processes on Net Nitrogen Mineralization in Salinized Farmland Soil

Author:

Zhao Qiang,Wu Jingwei,Guo ChenyaoORCID,Zhang Jifeng,Wang Xin,Liu Yawen,Zhao Hang,Zhang Rui

Abstract

Nitrogen is an indispensable and limiting element for plant and microbial growth. To investigate the combined effects of salinity and freezing–thawing (FT) processes on soil inorganic nitrogen (SIN) transformation in seasonally freezing salinized farmland, laboratory incubation experiments were conducted under five soil salt content (SSC) treatments (0.08%, 0.25%, 0.35%, 0.50%, and 0.70%), four FT temperature treatments (C (5 °C), FT (−5 + 5 °C), FT (−10 + 5 °C), and FT (−15 + 5 °C)), and two soil water content (SWC) treatments (40% and 80% of maximum water holding capacity (WHC)). Ammonium (NH4+-N) and nitrate (NO3−-N) nitrogen were monitored at the first, second, fifth, and eighth incubation days. The FT processes increased relative NH4+-N content by 13%, 39%, and 77% with the decreasing of freezing temperature from −5 °C to −15 °C compared with C (5 °C) treatments, respectively. FT (−5 + 5 °C) and FT (−15 + 5 °C) treatments decreased the relative NO3--N contents by 4% and 6% compared with C (5 °C) treatments, respectively. Under FT treatments, the increment of relative NH4+-N content was higher in low-SSC treatments and lower in high-SSC treatments. The relationship between relative NO3–-N content and SSC gradually changed from a decrease in C (5 °C) to an increase in FT (−15+5 °C) treatments. SWC decreased NH4+-N content in high-SSC and low-freezing temperature treatments (SSC × freezing temperature < −2.5%· °C), while NH4+-N increased in low-SSC and unfrozen treatments. The variations of SIN/Rmin (nitrogen mineralization rate) were mostly affected by NO3–-N/Rnit (net nitrification rate) and NH4+-N/Ra (net ammonification rate) in C (5 °C) and FT treatments, respectively. Overall, the results suggested that enhanced salinity inhibited the effects of freezing temperature on NH4+-N and NO3−-N formation, respectively. The increase in SWC weakened the NH4+-N formation induced by the decrease in freezing temperature, and this function increased with the increase in salinity.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3