Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment

Author:

Wang Yu12,He Wenqing12,Yan Changrong12,Gao Haihe12,Cui Jixiao12ORCID,Liu Qin12ORCID

Affiliation:

1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

Abstract

Rice, a crucial staple in China, is cultivated through various techniques, including seedling transplanting, dry direct seeding, and film mulching. Despite its significance, rice production is a considerable environmental burden. Using a life cycle assessment (LCA) methodology, this study aimed to evaluate the environmental impacts of four rice cultivation methods (transplanting rice, dry direct-seeding rice, dry direct-seeding rice with polyethylene film (PE), and dry direct-seeding rice with biodegradable film) in Northeast China. The results indicate that the magnitude of environmental impacts among treatments was consistent across years. The potential values of all environmental impacts of the four different cultivation methods of rice in the 2021 field trial were smaller than the results of the same cultivation method of rice system in the 2022 field trial. Among the four rice cultivation methods, the consumption of energy showed inconsistency over the two years, with the highest energy consumption in the first year being for dry seeding with PE film and in the second year for dry seeding without film. Additionally, transplanting exhibited the highest impact on water resource consumption and climate change. Dry direct-seeding rice displayed the highest eutrophication and ecotoxicity. Dry direct-seeding rice with a biodegradable film had the least impact in terms of acidification. Moreover, dry direct-seeding rice with a biodegradable film minimized water consumption and greenhouse gas emissions without compromising yield.

Funder

The National Key Research and Development Program of China

Key Research and Development Task Project of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3