Nitrogen Balance in a Sweet Sorghum Crop in a Mediterranean Environment

Author:

Scordia DaniloORCID,Cosentino Salvatore LucianoORCID,Mantineo Mariadaniela,Testa Giorgio,Patanè CristinaORCID

Abstract

Sweet sorghum is a C4 plant with great biomass potential yield in semi-arid environments. Under growing conditions affected by water shortage and nutrient deficiency, the optimal combination of irrigation and nitrogen (N) fertilization rate is a central issue for sustainable farming systems. In this paper, a N balance study was applied to sweet sorghum cv. Keller, managed under three irrigation levels (I0, I50, I100: 0, 50, and 100% crop evapotranspiration—ETc restoration) and four N-fertilization rates (N0, N60, N120, N180: 0, 60, 120, and 180 kg ha−1). The 15N-labelled fertilization technique was used to assess the fate of N fertilizer within the agroecosystem. Dry biomass yield was significantly affected by the irrigation, while N rates had no effect. Across N and irrigation levels, the isotopic composition showed that approximately 34% of N applied by fertilization was used by the crop, 56% remained in the soil at the end of the cropping season, 1.83% was leached as nitrate, and 1.72% was volatilized as ammonia. N-fertilizer uptake was the lowest in I0, while in N0, the soil was strongly N-impoverished since sorghum showed a great aptitude to benefit from the soil N reserve. An even N input/output system (i.e., N-output corresponded to N-input) was observed in the N120 treatment, and the soil N reserve remained unchanged, while the system was N-enriched (positive input/output) in N180. However, although beneficial for crop nutrition and soil N reserve for subsequent crops in rotation, the N180 treatment is unsustainable due to many environmental side effects in the agroecosystem.

Funder

Fourth Framework Programme

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3