Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds

Author:

Bapat Vishwas Anant1,Kavi Kishor Polavarapu Bilhan2ORCID,Jalaja Naravula3,Jain Shri Mohan4ORCID,Penna Suprasanna5

Affiliation:

1. Department of Biotechnology, Shivaji University, Kolhapur 416 004, India

2. Department of Genetics, Osmania University, Hyderabad 500 007, India

3. Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, India

4. Department of Agricultural Sciences, PL 27, Helsinki University, 00014 Helsinki, Finland

5. Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Bhatan, Mumbai 410 206, India

Abstract

Plants have long been exploited as a sustainable source of food, flavors, agrochemicals, colors, therapeutic proteins, bioactive compounds, and stem cell production. However, plant habitats are being briskly lost due to scores of environmental factors and human disturbances. This necessitates finding a viable alternative technology for the continuous production of compounds that are utilized in food and healthcare. The high-value natural products and bioactive compounds are often challenging to synthesize chemically since they accumulate in meager quantities. The isolation and purification of bioactive compounds from plants is time-consuming, labor-intensive, and involves cumbersome extraction procedures. This demands alternative options, and the plant cell culture system offers easy downstream procedures. Retention of the metabolic cues of natural plants, scale-up facility, use as stem cells in the cosmetics industry, and metabolic engineering (especially the rebuilding of the pathways in microbes) are some of the advantages for the synthesis and accumulation of the targeted metabolites and creation of high yielding cell factories. In this article, we discuss plant cell suspension cultures for the in vitro manipulation and production of plant bioactive compounds. Further, we discuss the new advances in the application of plant cells in the cosmetics and food industry and bioprinting.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3