Defense Enzymes in Mycorrhizal Tomato Plants Exposed to Combined Drought and Heat Stresses

Author:

Haddidi Imane,Duc Nguyen HongORCID,Tonk SzendeORCID,Rápó EszterORCID,Posta KatalinORCID

Abstract

As a result of climate change, drought and heat significantly reduced plant growth. Therefore, this study aims to explore and provide more insight into the effect of different arbuscular mycorrhizal fungi (AMF) strains (Rhizophagus irregularis, Funneliformis mosseae, and Funneliformis coronatum) on tomato plant tolerance against combined drought and heat stress, as well as combined drought and heat shock. A pot experiment was performed under controlled conditions in a growth chamber at 26/20 °C with a 16/8 h photoperiod. After six weeks of growth, one-third of plants were put in non-stress conditions, while another one-third were subjected to combined drought and heat stress (40% field capacity for two weeks and 38 °C/16 h and 30 °C/8 h for 5 days). The rest of the plants were exposed to combined drought and heat shock (40% of field capacity for two weeks and 45 °C for 6 h at the end of the drought period). All data were evaluated by one- and two-way analysis of variance (ANOVA). Means were compared by Duncan’s post hoc test at p < 0.05. The obtained results showed that combined drought and heat stresses had no significant impact on root colonization. Furthermore, stressed AMF plants exhibited a decrease in hydrogen peroxide and malondialdehyde content in the cells and showed changes in defense enzyme activities (peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and glutathione S-transferase (GST)) in leaves as well as in roots compared with their relative non-mycorrhizal plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference77 articles.

1. Agriculture in a changing climate

2. Adaptive agricultural practices for Rice-Wheat cropping system in Indo- Gangetic plains of India;Dubey;Agroecosyst. Spec. Group CEM IUCN Newsl.,2017

3. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

4. Influence of sub-optimal temperature on tomato growth and yield: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3