Simulation Analysis and Test of Pneumatic Distribution Fertilizer Discharge System

Author:

Cheng Biao,He Ruiyin,Xu Yong,Zhang Xuzheng

Abstract

Precision fertilizer application technology is necessary to improve the utilization efficiency of fertilizers in agricultural production. Traditional mechanical fertilization systems risk blockages and uneven application when working in multiple crop rows. Pneumatic fertilization systems have improved efficiency and fertilization quality, however, fewer studies have characterized their designs in regards to the motion of the fertilizer particles. Here, we design and evaluate the parameters of the key components of a pneumatic fertilizer discharge system. Numerical simulations were conducted using a coupled EDEM-FLUENT and gas-phase models together with bench tests to examine the effects of inlet wind speed on the efficiency and consistency of the pneumatic fertilization system. The EDEM-FLUENT simulations showed that the number of fertilizer particles in the grid box set by EDEM was 60 particles in the range from t = 0.275 s to t = 0.5 s, and there was no blockage or cut-off in the pipe. The gas-phase simulation showed that there were tiny vortices in the fertilizer conveying pipe, and the maximum flow rate of its backflow was lower than 3.59 m/s, which had little effect on the fertilizer conveyance. The bench test showed that the inlet wind speed was 35–40 m/s, and the fertilization efficiency was 0.29–0.41 kg/s when the maximum variation coefficient of the row discharge consistency of the pneumatic distribution fertilizer discharge system was 5.55%. The coefficient of variation of the average row discharge consistency was 3.93%, and the average fertilizer discharge met the design requirements. Therefore, the pneumatic distribution system achieves stable operation and meets the requirements of fertilization operations.

Funder

Jiangsu Provincial Department of Finance, Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference22 articles.

1. Study on Regional Differences of Chemical Fertilizer Application and Its Impact on Grain Production in China;Zheng;Master’s Thesis,2005

2. Situation estimation and Control Countermeasures of agricultural non-point source pollution in China I. situation estimation of agricultural non-point source pollution in China in the early 21st century;Zhang;China Agric. Sci.,2004

3. Chemical fertilizer pollution of farmland soil and its control countermeasures;Guo;Mod. Agric. Sci. Technol.,2019

4. Negative impact of long-term excessive application of chemical fertilizer on agricultural ecological environment and countermeasures;Wu;China Agric. Inf.,2016

5. Design and Experimental Study on Air Driven Rice Lateral Deep Precision Fertilization Device;Zuo,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3