Organic or Inorganic Amendments Influence Microbial Community in Rhizosphere and Decreases the Incidence of Tomato Bacterial Wilt

Author:

Wang Sai,Bai Zhanbing,Zhang Zhuo,Bi Jingjing,Wang Enzhao,Sun Miaomiao,Asante-Badu BismarkORCID,Zhang Jiayin,Njyenawe Marie Claire,Song Alin,Fan Fenliang

Abstract

There are many kinds of soil amendments that consist of different materials. The soil amendment is usually of benefit to plant health. However, the effects of the soil amendments on plant disease have rarely been compared and the involved mechanisms are largely unknown. In the present study, we investigated the influences of five contrasting soil amendments (i.e., potassium silicate (PS), calcium silicate (CS), biochar (BC), calcium silicate humic acid (SCHA), and bio-organic fertilizer (BOF)) on tomato bacterial wilt. In addition, we dissected the mechanism with high-throughput sequencing. The results showed that BC, SCHA, and BOF significantly reduced the incidence and delayed the disease, while BOF significantly reduced the incidence of bacterial wilt disease in the whole tomato growing period. In the early stage of the disease, BC, SCHA, and BOF significantly reduced the soil pH compared to CK. However, the contents of soil NH4+-N and NO3−-N were significantly increased. Some beneficial bacteria genera (Burkholderia, Mortierella, and Trichoderma) had a certain correlation with the incidence. Burkholderia and Mortierella were negatively associated with morbidity, but Trichoderma was positively associated with morbidity. Particularly, the Spearman correlation and the least partial squares path analysis indicated that Trichoderma was significantly positively correlated with the disease incidence, the soil physicochemical properties, and the numbers of soil pathogens (NSP) were significantly positively correlated with the number of root pathogens (NRP) and the physicochemical properties of plants were negatively correlated with the disease incidence. Moreover, BOF had better inhibitory effect on the occurrence of tomato bacterial wilt. Our results have implications for the better integrated management of tomato bacterial wilt.

Funder

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Program

Fundamental Research Funds for Central Non-profit Scientific Institution

Zaozhuang Talents Gathering Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3