Algal-Mediated Nanoparticles, Phycochar, and Biofertilizers for Mitigating Abiotic Stresses in Plants: A Review

Author:

Abideen ZainulORCID,Waqif HumaORCID,Munir Neelma,El-Keblawy AliORCID,Hasnain Maria,Radicetti EmanueleORCID,Mancinelli RobertoORCID,Nielsen Brent L.ORCID,Haider Ghulam

Abstract

The excessive use of agrochemicals to ensure food security under the conditions of a growing population, global climate change, weather extremes, droughts, wasteful use of freshwater resources, and land degradation has created severe challenges for sustainable crop production. Since the frequent and abrupt environmental changes are outcompeting the existing agricultural technologies of crop production systems to meet food security, the development and use of modern technologies and nature-based solutions are urgently needed. Nanotechnology has shown potential for revolutionizing agri-production and agri-business in terms of nanofertilizers and nanoparticles for crop protection. Furthermore, in the recent past, biochar has been identified as a negative emission technology for carbon sequestration and soil fertility improvement. However, supply chain issues for biochar, due to feedstock availability, challenges its worldwide use and acceptability. Meanwhile progress in algae research has indicated that, algae can be utilized for various agro-ecosystem services. Algae are considered an efficient biological species for producing biomass and phytochemicals because of their high photosynthetic efficiency and growth rate compared to terrestrial plants. In this context, various options for using algae as a nature-based solution have been investigated in this review; for instance, the possibilities of producing bulk algal biomass and algal-based biofertilizers and their role in nutrient availability and abiotic stress resistance in plants. The potential of algae for biochar production (hereafter “phycochar” because of algal feedstock), its elemental composition, and role in bioremediation is discussed. The potential role of agal nanoparticles’ in mitigating abiotic stress in crop plants was thoroughly investigated. This review has effectively investigated the existing literature and improved our understanding that, algae-based agro-solutions have huge potential for mitigating abiotic stresses and improving overall agricultural sustainability. However, a few challenges, such as microalgae production on a large scale and the green synthesis of nanoparticle methodologies, still need further mechanistic investigation.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference214 articles.

1. Climate change consequences and its impact on agriculture and food security;Kumar;Int. J. Chem. Stud.,2018

2. Vulnerability of the Indus Delta to Climate Change in Pakistan;Rasul;Pak. J. Meteorol.,2012

3. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river

4. IPCC 2007: Climate Change the Physical Science Basis;Solomon,2007

5. Phragmites karka plants adopt different strategies to regulate photosynthesis and ion flux in saline and water deficit conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3