Exogenous Si Mitigates the Effects of Cinnamic-Acid-Induced Stress by Regulating Carbon Metabolism and Photosynthetic Pigments in Cucumber Seedlings

Author:

Lyu Jian,Jin Li,Meng Xin,Jin Ning,Wang Shuya,Hu Linli,Zhang Guobin,Wu Yue,Luo Shilei,Yu Jihua

Abstract

(1) Background: Cinnamic acid (CA) is a harmful substance secreted by the roots of continuous-cropping crops. (2) Methods: This study aimed to investigate how exogenous Si affects chlorophyll content and carbon metabolism in cucumber seedlings under CA-induced stress. (3) Results: The levels of chlorophyll a, chlorophyll b, chlorophyll a+b, and carotenoids were significantly reduced due to CA-induced stress. The addition of exogenous Si significantly alleviated this reduction. Under CA-induced stress, exogenous Si significantly increased the activities of ribulose-1,5-bisphosphate carboxylase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphatase, fructose-1,6-bisphosphate aldolase, and transketolase. CA-induced stress significantly increased the fructose, glucose, and sucrose contents and reduced the starch content in the leaves and roots of seedlings. Similarly, the sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase activities were significantly reduced in plants under CA-induced stress. Overall, exogenous Si significantly reduced the soluble sugar content, increased the starch content, and promoted sucrose metabolism-related enzymatic activity in seedlings. (4) Conclusion: Exogenous Si can effectively increase the content of photosynthetic pigments in leaves of seedlings and maintain the balance of osmotic potential in the plant by reducing the accumulation of carbon assimilation products, which ultimately promotes tolerance to CA-induced autotoxicity stress.

Funder

Fuxi Young Talents Fund of Gansu Agricultural University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3