Monitoring of Emerging Water Stress Situations by Thermal and Vegetation Indices in Different Almond Cultivars

Author:

Gutiérrez-Gordillo Saray,de la Gala González-Santiago Javier,Trigo-Córdoba EmilianoORCID,Rubio-Casal Alfredo EmilioORCID,García-Tejero Iván FranciscoORCID,Egea GregorioORCID

Abstract

In recent years, the area dedicated to modern irrigated almond plantations has increased significantly in Spain. However, the legal irrigation allocations are lower than the maximum water requirements of the crop in most cases. Therefore, almond growers are forced to implement regulated deficit irrigation strategies on their farms, applying water stress in certain resistant phenological periods and avoiding it in sensitive periods. Given the need to monitor the water status of the crop, especially in the most sensitive periods to water stress, the objective of this work was to evaluate the sensitivity of two UAV-based crop water status indicators to detect early water stress conditions in four almond cultivars. The field trial was conducted during 2020 in an experimental almond orchard, where two irrigation strategies were established: full irrigation (FI), which received 100% of irrigation requirements (IR), and regulated deficit irrigation (RDI), which received 70% of IR during the whole irrigation period except during the kernel-filling stage when received 40% IR. The UAV flights were performed on four selected dates of the irrigation season. The Crop Water Status Index (CWSI) and the Normalized Difference Vegetation Index (NDVI) were derived from thermal and multispectral images, respectively, and compared to classical water status indicators, i.e., stem water potential (Ψstem), stomatal conductance (gs), and photosynthetic rate (AN). Of the four flights performed, three corresponded to mild water stress conditions and a single flight was performed under moderate water stress conditions. Under mild water stress, CWSI was not able to capture the differences between FI and RDI trees that were observed with Ψstem. Under moderate stress conditions, CWSI was sensitive to the water deficit reached in the trees and showed significant differences among both irrigation treatments. No differences were observed in the CWSI and NVDI response to water stress among cultivars. Although NDVI and CWSI were sensitive to water stress, the low signal intensity observed in NDVI makes this index less robust than CWSI to monitor crop water stress. It can be concluded that UAV-based CWSI measurements are reliable to monitor almond water status, although for early (mild) levels of water stress, Ψstem seems to be the preferred option.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3