Based on BERT-wwm for Agricultural Named Entity Recognition

Author:

Huang Qiang1,Tao Youzhi1,Wu Zongyuan1,Marinello Francesco2ORCID

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625099, China

2. Department of Land, Environment, Agriculture and Forestry, University of Padua, 35020 Legnaro, Italy

Abstract

With the continuous advancement of information technology in the agricultural field, a large amount of unstructured agricultural textual information has been generated. This information is crucial for supporting the development of smart agriculture, making the application of named entity recognition in the agricultural field more urgent. In order to enhance the accuracy of agricultural entity recognition, this study utilizes the pre-trained BERT-wwm model for word embedding into the text. Additionally, a channel attention mechanism (CA) is introduced in the BILSTM-CRF downstream feature extraction network to comprehensively capture the contextual features of the text. Experimental results demonstrate that the proposed method significantly improves the performance of named entity recognition, with increased accuracy, recall, and F1 value. The successful implementation of this method provides reliable support for downstream tasks such as agricultural knowledge graph construction and question and answer systems and establishes a foundation for better understanding and utilization of agricultural textual information.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3