Multi-Scale Stereoscopic Hyperspectral Remote Sensing Estimation of Heavy Metal Contamination in Wheat Soil over a Large Area of Farmland

Author:

Zhong Liang1,Chu Xueyuan2,Qian Jiawei1,Li Jianlong123,Sun Zhengguo3

Affiliation:

1. State Key Laboratory of Pharmaceutical Biotechnology, Department of Ecology, School of Life Sciences, Nanjing University, Nanjing 210023, China

2. School of Physics, Nanjing University, Nanjing 210023, China

3. College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China

Abstract

With the rapid development of China’s industrialization and urbanization, the problem of heavy metal pollution in soil has become increasingly prominent, seriously threatening the safety of the ecosystem and human health. The development of hyperspectral remote sensing technology provides the possibility to achieve the rapid and non-destructive monitoring of soil heavy metal contents. This study aimed to fully explore the potential of ground and satellite image spectra in estimating soil heavy metal contents. We chose Xushe Town, Yixing City, Jiangsu Province as the research area, collected soil samples from farmland over two different periods, and measured the contents of the heavy metals Cd and As in the laboratory. At the same time, under field conditions, we also measured the spectra of wheat leaves and obtained HuanJing-1A HyperSpectral Imager (HJ-1A HSI) satellite image data. We first performed various spectral transformation pre-processing techniques on the leaf and image spectral data. Then, we used genetic algorithm (GA) optimized partial least squares regression (PLSR) to establish an estimation model of the soil heavy metal Cd and As contents, while evaluating the accuracy of the model. Finally, we obtained the best ground and satellite remote sensing estimation models and drew spatial distribution maps of the soil Cd and As contents in the study area. The results showed the following: (1) spectral pre-processing techniques can highlight some hidden information in the spectra, including mathematical transformations such as differentiation; (2) in ground and satellite spectral modeling, the GA-PLSR model has higher accuracy than PLSR, and using a GA for spectral band selection can improve the model’s accuracy and stability; (3) wheat leaf spectra provide a good ability to estimate soil Cd (relative percent difference (RPD) = 2.72) and excellent ability to estimate soil As (RPD = 3.25); HJ-1A HSI image spectra only provide the possibility of distinguishing high and low values of soil Cd and As (RPD = 1.87, RPD = 1.91). Therefore, it is possible to indirectly estimate soil heavy metal Cd and As contents using wheat leaf hyperspectral data, and HJ-1A HSI image spectra can also identify areas of key pollution.

Funder

High-Level International Cooperation and Exchange Activities Project

National Key R&D Plan Project of China

project of the Asia-Pacific Network for Global Change Research

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3