Temperature Dependences of IR Spectra of Humic Substances of Brown Coal

Author:

Volkov DmitryORCID,Rogova OlgaORCID,Proskurnin MikhailORCID

Abstract

The capabilities of temperature-monitored IR spectroscopy for studying the organic matter and mineral composition of humic substances (HS) were tested. Temperature dependences of the mid-IR spectra of humic substances heated in the air in the range 25–215 °C (298–488 K, with a step of 2.5 °C)—for three commercially available samples isolated from brown coal (leonardite)—were performed. The characteristic bands were identified, and their changes in band maxima positions and intensities were compared. From the viewpoint of interpretation of HS components, the spectra were divided into regions of quartz lattice region (800–260 cm−1), quartz overtone region (1270–800 cm−1), humic substance organic matter region (1780–1270 cm−1), quartz combination region (2800–1780 cm−1), CH-speciation region (3100–2800 cm−1), and hydrogen-speciation region (4000–3100 cm−1) thus selected to contain the dominating type of bands. For the first time, a reversible change in the frequencies of the band maxima in IR spectra upon heating was observed, which can be interpreted as forming structures with a particular order in the studied humic substances in the dry state. For a single sample, both the band-shift scale and the functional dependence of the various bands on temperature differ significantly. The approach differentiates crystalline quartz bands, amorphous silica, and HSOM/surface groups experiencing a different temperature behavior of the band maxima and their intensities. Band-maximum temperature dependence can be considered more stable to changes in experimental conditions than band maxima at a single temperature, thus providing a more detailed HS structure analysis without HS decomposition or destruction.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3