Semantic Segmentation of Wheat Stripe Rust Images Using Deep Learning

Author:

Li Yang,Qiao Tianle,Leng Wenbo,Jiao Wenrui,Luo Jing,Lv Yang,Tong Yiran,Mei Xuanjing,Li Hongsheng,Hu Qiongqiong,Yao QiangORCID

Abstract

Wheat stripe rust-damaged leaves present challenges to automatic disease index calculation, including high similarity between spores and spots, and difficulty in distinguishing edge contours. In actual field applications, investigators rely on the naked eye to judge the disease extent, which is subjective, of low accuracy, and essentially qualitative. To address the above issues, this study undertook a task of semantic segmentation of wheat stripe rust damage images using deep learning. To address the problem of small available datasets, the first large-scale open dataset of wheat stripe rust images from Qinghai province was constructed through field and greenhouse image acquisition, screening, filtering, and manual annotation. There were 33,238 images in our dataset with a size of 512 × 512 pixels. A new segmentation paradigm was defined. Dividing indistinguishable spores and spots into different classes, the task of accurate segmentation of the background, leaf (containing spots), and spores was investigated. To assign different weights to high- and low-frequency features, we used the Octave-UNet model that replaces the original convolutional operation with the octave convolution in the U-Net model. The Octave-UNet model obtained the best benchmark results among four models (PSPNet, DeepLabv3, U-Net, Octave-UNet), the mean intersection over a union of the Octave-UNet model was 83.44%, the mean pixel accuracy was 94.58%, and the accuracy was 96.06%, respectively. The results showed that the state-of-art Octave-UNet model can better represent and discern the semantic information over a small region and improve the segmentation accuracy of spores, leaves, and backgrounds in our constructed dataset.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3