Understanding the Role of Physiological and Agronomical Traits during Drought Recovery as a Determinant of Differential Drought Stress Tolerance in Barley

Author:

Hasanuzzaman Md.,Shabala Lana,Brodribb Timothy J.,Zhou MeixueORCID,Shabala SergeyORCID

Abstract

The fast and efficient recovery could be an important trait defining the efficacy of plant drought adaptation. In this work, we aimed to develop a set of simple and appropriate physiological proxies that could be used as reliable indicators to predict plant drought responses and validate the role of specific physiological traits such as root length, stomata density, and residual transpiration, in the drought tolerance and recovery in barley. Eighty barley (Hordeum vulgare L.) genotypes were subjected to progressive droughting until the soil moisture level reached 10%, followed by rewatering. Plants were visually scored at the end of drought period and two weeks after rewatering. SPAD values and chlorophyll fluorescence Fv/Fm ratio were also measured, alongside with stomatal density (SD) and residual transpiration (RT). The same genotypes were germinated in paper rolls treated with 15% (w/v) of polyethylene glycol (PEG) 8000 by quantification of changes in the root growth patterns. Responses to drought stress varied among the genotypes, and drought tolerance and recovery scores were significantly correlated with each other. Changes in SPAD value, Fv/Fm ratio and root length were significantly correlated with the drought tolerance and recovery indices. Both indices correlated strongly with the SD and RT of irrigated plants, although in an unexpected direction. We have also correlated the extent of plants’ drought tolerance to their ability to grow in saline soils (a condition often termed a “physiological drought”) and found a positive association between these two traits. The fact that drought tolerant genotype also possessed higher salinity tolerance implies some common mechanisms conferring both traits. Plants having less SD and more RT under irrigated conditions showed higher drought tolerance. It is concluded that lower SD and higher RT under optimal conditions may be used as proxies for drought tolerance in barley.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3