Changes of Key Soil Factors, Biochemistry and Bacterial Species Composition during Seasons in the Rhizosphere and Roots of Codonopsis pilosula (tangshen)

Author:

Meng Tongtong1,Zhao Taotao2,Leng Feifan2,Chen Jixiang1,Wang Yonggang2

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Codonopsis pilosula is a medicinal and edible herb with a rich nutritional value. In Gansu Province, China, its production quality and yield differ during the four seasons. Here, we investigated the differences in the microfloral composition and metabolic functions in the rhizospheric soil and roots of C. pilosula during the four seasons, and we also analyzed their dynamic and synergistic effects on C. pilosula growth and carbohydrate content change. The C. pilosula samples were analyzed for plant physiology, microfloral composition and metabolic functions in the rhizospheric soil and roots using high-throughput sequencing technology. Environmental indices including soil physiochemistry and meteorological conditions were also determined by the coupled chromatography–spectroscopy technique. The results revealed that the C. pilosula growth was affected by temperature, precipitation and light intensity, with the bacterial structures and functions of the soil and root samples showing obvious seasonal changes. Due to the diversity of microbial composition and community metabolic function, and the synergistic effect of microbial and environmental factors, there are significant differences in stress resistance, physiological status and metabolites of C. pilosula in different seasons. Furthermore, the change in seasons was significantly correlated with the quality and yield of C. pilosula. This study provides a scientific basis for soil improvement and the refinement of local Radix C. pilosula cultivation methods.

Funder

National Natural Science Foundation of China

Youth Talent Support Program of Lanzhou University of Technology

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3