At-ore1 Gene Induces Distinct Novel H2O2-NACs Signaling in Regulating the Leaf Senescence in Soybeans (Glycine max L.)

Author:

La Van HienORCID,Nguyen Trinh Hoang Anh,Ngo Xuan Binh,Tran Van Dien,Khuat Huu Trung,Bui Tri Thuc,Tran Thi Thu Ha,Chung Young Soo,Nguyen Tien Dung

Abstract

Senescence is modulated by ORESARA1 (ORE1), a NAC transcription factor that interacts with hormones to fully induce senescence. The At-ore1 gene acts as a suppressor of leaf senescence; however, its exact role in this respect has not been clearly defined. In this study, the function of At-ore1 during leaf senescence was analyzed in soybeans. The precocious leaf senescence of the ore1-1 line was associated with greater chlorophyll loss, leaf necrosis, and redox imbalance in the early vegetative stage during the hyper-accumulation of endogenous abscisic acid (ABA) by enhancing the expression of GmNECD3-related ABA synthesis. At-ore1 induced ABA regulation of the H2O2-GmARF2-GmNAC081 signaling circuit, which relays the At-ore1-induced cell death signal mediation to the caspase-1-like vacuolar processing enzyme (VPE) expression, triggering programmed cell death. In contrast, it was found that At-ore1 functions in IAA to delay leaf-senescence-mediated suppression of the expression of ABA, ROS, and senescence-associated gene 39 (GmSAG39). The IAA-induced GmNAC065 expression controls soybean leaves’ longevity, as discovered by screening At-ore1 expression in ore1-6 for a more stay-green leaf phenotype by helping to increase seed yields. These results uncover a mechanism that modulates ore1 plants’ amplitude expression involved in the ABA/IAA balance in the activation of GmNAC081- or GmNAC065-dependent H2O2 levels, which are crucial in the senescence or delayed leaf senescence of soybeans.

Funder

This research was funded by the Ministry of Science and Technology (MOST) of Vietnam

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3