Improving Deep Learning Classifiers Performance via Preprocessing and Class Imbalance Approaches in a Plant Disease Detection Pipeline

Author:

Ojo Mike O.1ORCID,Zahid Azlan1ORCID

Affiliation:

1. Department of Biological and Agricultural Engineering, Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA

Abstract

The foundation of effectively predicting plant disease in the early stage using deep learning algorithms is ideal for addressing food insecurity, inevitably drawing researchers and agricultural specialists to contribute to its effectiveness. The input preprocessor, abnormalities of the data (i.e., incomplete and nonexistent features, class imbalance), classifier, and decision explanation are typical components of a plant disease detection pipeline based on deep learning that accepts an image as input and outputs a diagnosis. Data sets related to plant diseases frequently display a magnitude imbalance due to the scarcity of disease outbreaks in real field conditions. This study examines the effects of several preprocessing methods and class imbalance approaches and deep learning classifiers steps in the pipeline for detecting plant diseases on our data set. We notably want to evaluate if additional preprocessing and effective handling of data inconsistencies in the plant disease pipeline may considerably assist deep learning classifiers. The evaluation’s findings indicate that contrast limited adaptive histogram equalization (CLAHE) combined with image sharpening and generative adversarial networks (GANs)-based approach for resampling performed the best among the preprocessing and resampling techniques, with an average classification accuracy of 97.69% and an average F1-score of 97.62% when fed through a ResNet-50 as the deep learning classifier. Lastly, this study provides a general workflow of a disease detection system that allows each component to be individually focused on depending on necessity.

Funder

Texas Department of Agriculture

United States Department of Agriculture (USDA)’s National Institute of Food and Agriculture (NIFA) Federal Appropriations

Texas A&M AgriLife Research, Vegetable and Fruit Improvement Center

Hatch program of the USDA-NIFA

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3