Abstract
One challenge in plant breeding is to ensure optimized production under fluctuating environments while reducing the environmental impacts of agriculture. Thus, new rapeseed varieties should be adapted to a wide range of pedoclimatic conditions and constraints. Addressing this issue requires identifying the critical factors limiting production and the genotype by environment (G × E) interaction. Our goal was to characterize the effects of environment and G × E interaction on the seed yield of rapeseed grown over a large field network. First, we defined a pedoclimatic indicator set with the ability to highlight the potential limiting factors along the crop cycle by analyzing the yield of two genotypes grown under 20 environments. Out of the 84 pedoclimatic indicators, 10 were identified as limiting after a partial least squares regression analysis. The environments were then clustered into five envirotypes, each characterized by few major limiting factors: low winter temperatures and heat stress during seed filling (1); low solar radiation during seed filling (3); vernalization conditions during winter (4) and high temperatures at flowering (5). A larger genetic diversity was evaluated in a subset of 11 environments to analyze the impact of envirotyping on genotype ranking. Their results were discussed in light of field network management and plant breeding purposes.
Funder
Agence Nationale de la Recherche
Subject
Agronomy and Crop Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献