Unveiling the Impact of Different Nitrogen Fertilizer Levels on Rice’s Eating Quality through Metabolite Evaluation

Author:

Zhou Nianbing123,Zhang Yanhong1,Sun Tong1,Zhu Jinyan123,Hu Jinlong123,Xiong Qiangqiang123

Affiliation:

1. Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China

2. Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Yangzhou 225009, China

3. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China

Abstract

We investigated the variations in metabolites associated with the quality of rice consumption when exposed to varying nitrogen fertilizer levels, as well as the regulatory role of pivotal metabolites within metabolic pathways. This research employed Hongyang 5 as the subject of experimentation, examining the metabolites of Hongyang 5 at three different nitrogen levels using non-targeted metabonomic analysis. The findings indicated that the overall assessment of the eating quality/palatability (CEQ) and amylose contents (AC) of Low nitrogen (D1: 180 kg·ha−1) was notably greater than that of Medium nitrogen (D2: 270 kg·ha−1) and High nitrogen (D3: 315 kg·ha−1). Conversely, the amylopectin (APC), total starch (SC), and protein contents (AP) of D1 were remarkably lower than those observed in D2 and D3. The starch debranching enzyme (DBE) and granule-bound starch synthetase (GBSS) of D1 were remarkably higher than those of D2 and D3. The soluble starch synthase (SSS) of D1 was the lowest. The ADP-glucose pyro-phosphorylase (AGP) and starch branching enzyme (SBE) of D3 were remarkably higher than that of D1 and D2. We identified 76 differential metabolites (DMs) between D1 and D2 (20 up-regulated and 56 down-regulated). A total of 88 DMs were identified between D3 and D1 (42 up-regulated and 46 down-regulated). A total of 57 DMs were identified between D3 and D2. Most of the DMs related to rice-eating quality were involved in the lipid metabolic pathway and amino acid metabolic pathway. The essential metabolites within the metabolic pathway are classified as lipid metabolites and are (13(S)-hydroperoxylinolenic acid, PGB2, 3-phosphocholine, 7-epijasmonic acid, 20-carboxyleukotriene B4 and 11-dehydro-thromboxane B2), amino acid metabolites (4-guanidinobutanoic acid, (3R, 5S)-1-pyrroline-3-hydroxy-5-carboxylic acid, citric acid, (S)-2-Acetolactate, L-glutamine, L-2, 4-aminobutyric acid and putrescine). These key metabolites may be affected by nitrogen fertilizer conditions and play critical regulatory roles in the metabolic pathway, resulting in differences in rice eating quality.

Funder

Jiangsu (Haian) Modern Agriculture (Rice and Wheat) Science and Technology Comprehensive Demonstration Base

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3