Evaluation of a Legume-Derived Protein Hydrolysate to Mitigate Iron Deficiency in Plants

Author:

Celletti SilviaORCID,Astolfi StefaniaORCID,Guglielmo NicolettaORCID,Colla GiuseppeORCID,Cesco Stefano,Mimmo TanjaORCID

Abstract

Biostimulants play an important role in the development of management practices able to reach adequate productivity to meet the food demand of a growing world population, while following a sustainable agriculture model. This work aims to evaluate the effect of a protein hydrolysate derived from legume seeds by enzymatic hydrolysis on plant growth and also to verify its ability to mitigate Fe deficiency, a widespread problem significantly limiting plant growth and crop productivity. Experiments were performed with tomato (Solanum lycopersicum L.—cv. AKRAI F1) and cucumber (Cucumis sativus L.—cv. EKRON F1). The plants were grown hydroponically under adequate or limited Fe supply. Changes in shoot and root fresh weight, leaf relative chlorophyll content and the accumulation of macro- and microelements in shoots and roots were measured. Plant ability to cope with Fe deficiency was measured by evaluating the activity of root Fe3+-chelate reductase. Our results indicate that the foliar treatments with the protein hydrolysate did not significantly affect growth parameters when plants were grown in full nutrient solution. However, the biostimulant was able to improve the growth performance of Fe-deficient plants. Therefore, the protein hydrolysate can be a powerful tool to stimulate crop growth under Fe-deficient environments, leading to reduced fertilizer inputs with related environmental and economic benefits.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference37 articles.

1. Mining iron: Iron uptake and transport in plants

2. Iron utilization and metabolism in plants

3. Acquisition et gestion du fer par les plantes;Briat;Agriculture,2004

4. Mineral Nutrition of Higher Plants;Marschner,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3