Production of Black Cumin via Somatic Embryogenesis, Chemical Profile of Active Compounds in Callus Cultures and Somatic Embryos at Different Auxin Supplementations

Author:

Higazy Ahmed E.1,El-Mahrouk Mohammed E.1,El-Banna Antar N.2,Maamoun Mosaad K.3,El-Ramady Hassan4ORCID,Abdalla Neama56ORCID,Dobránszki Judit6ORCID

Affiliation:

1. Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

2. Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

3. Department of Breeding and Genetics of Vegetables, Aromatic & Medicinal Plants, Agriculture Research Center, Horticultural Research Institute, Giza 12619, Egypt

4. Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

5. Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt

6. Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, 4400 Nyíregyháza, Hungary

Abstract

Black cumin or Nigella sativa L. is a medicinal plant of the Ranunculaceae family that has enormous importance. It has traditionally been used to cure a lot of diseases since ancient times. In the current study, the effects of different auxins on callus induction and subsequent somatic embryo formation of N. sativa L. cv. Black Diamond were examined. The best result of callus induction was observed when cotyledon explants were incubated in a Murashige and Skoog (MS) medium supplemented with 1.0 mg L−1 α-naphthaleneacetic acid (NAA). The formation of somatic embryos was achieved efficiently from cotyledon-derived calli cultured on a 2 mg L−1 Indole-3-butyric acid (IBA)-containing medium. Furthermore, histological analysis of embryogenic calli was used to detect the presence of different developmental stages of somatic embryos. In contrast to the calli and embryos of N. sativa ‘Black Diamond’, which initiated in the dark, light was necessary for the complete differentiation of callus and embryo cultures into shoots/developed plants. Hypocotyl-derived calli and embryos were successfully differentiated on IBA at 2.0, 1.0 mg L−1, and NAA at 2.0 mg L−1. To the best of our knowledge, this work can be considered the first report on the differentiation of N. sativa ‘Black Diamond’ somatic embryos into developed plants. Moreover, the metabolic profiles of secondary products of N. sativa ‘Black Diamond’ callus and embryo cultures originated from the best auxin treatments identified and were compared with that of intact seeds. Callus cultures of N. sativa ‘Black Diamond’ contained thymoquinone (TQ) in a significant percentage of the peak area (2.76%). Therefore, callus cultures could be used as a perfect alternative source of TQ for pharmaceutical and therapeutic purposes. In addition, fatty acids and/or their esters were recorded as the major components in callus and embryo cultures. These vital compounds could be isolated and used for numerous industrial applications.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3