Soil Bacterial Community and Greenhouse Gas Emissions as Responded to the Coupled Application of Nitrogen Fertilizer and Microbial Decomposing Inoculants in Wheat (Triticum aestivum L.) Seedling Stage under Different Water Regimes

Author:

Kpalari Djifa Fidele123ORCID,Mounkaila Hamani Abdoul Kader4,Hui Cao12,Sogbedji Jean Mianikpo3,Liu Junming12,Le Yang12,Kama Rakhwe5,Gao Yang1ORCID

Affiliation:

1. Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China

2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Laboratoire Interface Sciences du Sol, Climat et Production Végétale (LISSCPV), Ecole Supérieure d’Agronomie, Université de Lomé, Lome 01 BP 1515, Togo

4. College of Tropical Crops, Hainan University, Haikou 570100, China

5. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

Abstract

The soil microbial community is critically important in plant nutrition and health. However, this community is extremely sensitive to various environmental conditions. A pot experiment was conducted during the wheat seedling stage to better understand the influences of the coupled application of nitrogen (N) and microbial decomposing inoculants (MDI) on the soil bacteria community under different water regimes. There were two levels of water and six levels of fertilization. The results reveal that water stress increased the relative abundance of Acidobacteria and decreased that of Firmicutes and Proteobacteria. The application of 250 kg N ha−1 altered the diversity of the bacterial community but increased the relative abundance of nitrifying bacteria. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions were negatively correlated with Myxococcota and Methylomirabilota while positively correlated with Patescibacteria. These two gases were also positively correlated with nitrifying bacteria, and the correlation was more significant under the full irrigation regime. These findings indicate that MDI does not substantially influence the soil bacterial community and its relationship with greenhouse gas emission at the wheat seedling stage and that the abundance of the soil bacterial community would mainly depend on the rational control of the amount of N and water applied.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3