Metabolome and Transcriptome Analyses Provide Insights into Glucosinolate Accumulation in the Novel Vegetable Crop Cardamine violifolia

Author:

Rao Shen1ORCID,Gong Jue2,Liu Haodong1,Liu Xiaomeng1,Cheng Shuiyuan1,Cheng Hua1ORCID,Cong Xin12

Affiliation:

1. School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430048, China

2. Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China

Abstract

Cardamine violifolia, a species belonging to the Brassicaceae family, is a novel vegetable crop that is rich in glucosinolates. However, the specific glucosinolate profiles in this species remain unknown. In the present study, four parts of C. violifolia were collected including central leaves (CLs), outer leaves (OLs), petiole (P), and root (R). The highest level of total glucosinolate was observed in the R. A total of 19 glucosinolates were found in C. violifolia. The predominant glucosinolate compounds were 3-methylbutyl glucosinolate, 6-methylsulfinylhexyl glucosinolate, Indol-3-ylmethyl glucosinolate, 4-methoxyglucobrassicin, and neoglucobrassicin. A transcriptome analysis showed that 16 genes, including BCAT1, BCAT3-6, CYP79A2, CYP79B2-3, CYP83A1, CYP83B1, and SOT17-18, and nine metabolites, such as valine, tryptophan, and 1-methylpropyl glucosinolate, were enriched in the glucosinolate biosynthesis pathway. These genes may be involved in the regulation of glucosinolate accumulation among the four parts. A weighted gene co-expression analysis showed that five genes were predicted to regulate glucosinolate accumulation, including ABC transporter G family member 19, 3-ketoacyl-CoA synthase 19, and pyruvate decarboxylase 1. This study deepens our understanding of the nutrient quality of C. violifolia and provides insights into the regulatory mechanism of glucosinolate accumulation in C. violifolia.

Funder

Dawning Plan Project of the Knowledge Innovation Special Project of Wuhan City

Doctoral Research Funding Project of Wuhan Polytechnic University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3