Effects of Nitrogen Application Rate on Dry Matter Weight and Yield of Direct-Seeded Rice under Straw Return

Author:

Ma Peng1,Zhang Ke-Yuan1,Liao Xue-Huan1,Aer Li-Se1,Yang Er-Luo1,Deng Jun1,Zhou Lin1,Zhang Rong-Ping1

Affiliation:

1. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Straw is an agricultural byproduct that results from the production of many crops, such as cereals, yet it is often considered a waste product. However, straw has both historical precedent and future potential as an agricultural resource. In this study, we aimed to determine the effects of returning straw to the soil on rice cultivation. To this end, we used the hybrid rice variety Luliangyou Jingling as the test material to study the effect of straw return under four different nitrogen application levels (0 kg N (N1), 120 kg N/hm2 (N2), 150 kg N/hm2 (N3), and 180 kg N/hm2 (N4)) on rice tillering dynamics, leaf area index (LAI), dry matter accumulation, and yield. We found that rice under straw return had a higher number of effective panicles, along with a higher number of grains per panicle, compared to those without straw return. Additionally, the tiller number, LAI, total dry matter, and yield of rice in each main growth period under straw return were higher than those without straw return, and these values increased with an increase in nitrogen application rate. The yield was the highest at 9520.63 kg/hm2 without straw return, while the highest yield with straw return was achieved at 10,738.26 kg/hm2. Our results revealed the optimal nitrogen application level for high yield of two-line direct-seeded rice under straw return, which provides a theoretical reference for the precise reduction of fertilizer application in rice cultivation.

Funder

High-efficiency cultivation technology integration and industrial application of Yuehesimiao series direct-seeded rice

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3