Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars

Author:

Xiang DabingORCID,Ma Chengrui,Song Yue,Wu Qi,Wu Xiaoyong,Sun Yanxia,Zhao Gang,Wan Yan

Abstract

Photosynthesis is the basis for plant productivity, and improvement of photosynthetic efficiency is an important way to improve crop yield. However, the relationship between photosynthetic parameters and the yield of Tartary buckwheat (Fagopyrum tataricum) under rainfed conditions is unclear. A two-year field trial was conducted during 2016 and 2017 to assess the photosynthetic capacity of different leaves, dry matter accumulation, and yield of four Tartary buckwheat cultivars from flowering to maturity. The leaves of all cultivars aged gradually after flowering, and the leaf chlorophyll (Chl) and soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr), and stomatal conductance (Gs) tended to decline. The Chl, SP, Pn, Tr, and Gs of cultivars (cvs.) XiQiao2 and QianKu3 were significantly higher than those of LiuKu3 and JiuJiang at each sampling time from 18 days after anthesis to maturity, but the intercellular CO2 content (Ci) showed the opposite trend. Cultivars XiQiao2 and QianKu3 produced more total dry matter (mean 17.1% higher), had higher harvest index (HI, mean 16.4% higher), and yield (mean 29.0% higher) than cvs. LiuKu3 and JiuJiang at maturity, and the difference was remarkably consistent. The yield of all the cultivars was positively correlated with leaf Chl, SP, Pn, Tr, and Gs, but negatively correlated with Ci. At late growth stages, the high-yielding cultivars maintained higher Chl, SP contents, Pn, Tr, and Gs, and showed higher dry matter accumulation and lower Ci than the low-yielding cultivars, consistent with their higher leaf photosynthetic capacity. The important factors determining the yield of Tartary buckwheat were maintaining higher leaf Chl and SP content and photosynthetic capacity and delaying aging during the grain formation stage. Enhanced rates of photosynthesis and dry matter accumulation led to higher post-anthesis accumulation of biomass with a positive impact on grain number and higher yield.

Funder

National Natural Science Foundation of China

the earmarked fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3