Combining Ability for Agromorphological and Physiological Traits in Different Gene Pools of Common Bean Subjected to Water Deficit

Author:

Arruda Isabella MendonçaORCID,Moda-Cirino Vânia,Koltun AlessandraORCID,Zeffa Douglas MarianiORCID,Nagashima Getúlio Takashi,Gonçalves Leandro Simões AzeredoORCID

Abstract

Water stress is one of the main limiting factors for common bean crops, negatively affecting grain yield and seed quality. Thus, the objective of this study was to evaluate the inheritance of agromorphological and physiological traits related to drought tolerance in order to identify promising combinations. The experiment was carried out in a greenhouse with a partial diallel scheme between three drought-tolerant genotypes (IAPAR 81, BAT 477. and SEA 5), and nine cultivars widely grown in Brazil (BRS Estilo, IAC Alvorada, IPR Campos Gerais, IPR Uirapuru, IPR Nhambu, BRS Esteio, IPR Garça, BRS Radiante, and DRK 18), in a randomized block design with four replicates. The plants were grown in pots with substrate under 80% of pot capacity until they reached the stage R5, when water supply was restricted to 30% for 20 days in the pots under stress treatment. A wide variability for the agromorphological and physiological traits was observed. Water deficit reduced plant performance for most agromorphological traits and altered their physiological metabolism. Additive and non-additive effects are involved in the genetic control of the majority of agromorphological and physiological traits both under water stress and control (well-watered) conditions. The parental genotypes BAT 477 (group I) and IAC Alvorada, IPR Uirapuru, and BRS Esteio (group II) may be included in breeding programs aiming at improving drought tolerance in common bean since they present high positive general combining abilities for agromorphological traits. The crosses IAPAR 81 × IPR Campos Gerais, and SEA 5 × BRS Radiante resulted in the best combinations considering grain yield per plant and total dry biomass, when cultivated under water deficit.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3