Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora

Author:

Yang Yuehua1,Wang Fangkui2,Jiang Jialin1,Jiang Ling1

Affiliation:

1. National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China

2. State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China

Abstract

Soil drench treatment using Paenibacillus polymyxa strain KN-03 was applied to citrus plants infected with Candidatus Liberibacter asiaticus (CLas). The infection status was assessed using PCR and a real-time quantitative PCR detection system (qPCR). The application of KN-03 resulted in a notable reduction in CLas levels in citrus plants. Specifically, by the 257th day post treatment commencement, following 24 KN-03 applications, the negative rates of CLas in the vein, root tip, and shoot tip were 50%, 0%, and 50%, respectively. After 24 cycles, KN-03 application significantly enhanced plant growth and stimulated reactive oxygen production in citrus leaves compared to control plants. Transcriptome analysis identified specific upregulated pathways. Furthermore, flora analysis revealed an increased abundance of microorganisms possessing potential utilization value, including Burkholderia-Caballeronia-Paraburkholderia, uncultured_bacterium_o_Acidobacteriales, uncultured_bacterium_f_Gemmatimonadaceae, and Rhodanobacter, in the root zone. Moreover, the BugBase analysis indicated that KN-03 treatment increased the abundance of beneficial rhizosphere bacteria associated with biofilm formation, element mobilization, and stress tolerance. These findings support the utility of Paenibacillus polymyxa KN-03 as an effective plant-growth-promoting bacterium for CLas management, with additional benefits for plant growth and soil health, specifically offering detoxification resources for shoot tip grafting.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3