Physiological and Transcription Analyses Reveal the Regulatory Mechanism in Oat (Avena sativa) Seedlings with Different Drought Resistance under PEG-Induced Drought Stress

Author:

Gong WenlongORCID,Ju ZeliangORCID,Chai Jikuan,Zhou Xiangrui,Lin Doudou,Su Weijuan,Zhao Guiqin

Abstract

Drought severely limits the growth and development of oat (Avena sativa) seedlings. As an osmotic regulator simulating a drought environment, Polyethylene glycol (PEG) has been widely linked in response to plant drought tolerance. However, the underlying mechanism of oats’ response to PEG stress is still largely unknown. Here, we investigated the physiological and transcriptome variables of the drought-resistant oat variety DA92-2F6, and the drought-susceptible variety Longyan 3 under 15% PEG-6000 drought stress to better understand the underlying drought tolerance molecular mechanisms. The physiological results showed that except for the cell membrane permeability, the antioxidant enzyme, osmotic adjustment substance, and photosynthetic efficiency were significantly higher in the DA92-2F6 after 7 d stress. Further, 12 cDNA libraries and 123,223 unigenes were obtained by RNA-seq. A total of 33,857 differentially expressed genes (DEGs) were detected, of which two co-upregulated and three co-downregulated in four comparisons. We highlighted an analysis of the DEGs in phytohormone signal transduction pathway. The auxin, cytokinin, and brassinosteroid signaling pathways, were suppressed in Longyan 3, while abscisic acid and jasmonic acid signaling pathways were mainly activated in DA92-2F6 under drought stress. The upregulated of PP2C, ABF, SNRK2, GID1, JAZ, and MYC2 genes may enhance the drought tolerance of DA92-2F6. Taken together, these results provided a new transcript resource for the drought tolerance improvement and a reference for oat drought resistance molecular breeding.

Funder

the Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3