Carbon Dioxide Efflux of Bare Soil as a Function of Soil Temperature and Moisture Content under Weather Conditions of Warm, Temperate, Dry Climate Zone

Author:

Juhász CsabaORCID,Huzsvai LászlóORCID,Kovács ElzaORCID,Kovács GyörgyiORCID,Tuba Géza,Sinka Lúcia,Zsembeli JózsefORCID

Abstract

It is difficult to estimate the contribution of individual sources to the total CO2 efflux from soil with vegetation. Long-term experiments with bare soil will provide useful conclusions. In this study, we aimed to mathematize the effect of soil temperature and soil moisture content on bare soil CO2 efflux in a four-season semiarid region to assess the adequacy of different models and to enable future predictions by seasons. We proved that the exponential model adequately described the relationship between the CO2 efflux and the soil temperature. The model calculations showed no significant relationship in the case of an additional quadratic exponential function, while, in the case of the linear model, the homoscedasticity criteria were not met, and the accuracy of the estimation was found to be dependent on the level of CO2 efflux. When the soil moisture content with either an exponential function or power was added to the exponential formula, the models did not provide more accurate results. Our findings confirm that the best-fitting models are dependent on the local environmental conditions, and there are areas in which the moisture content does not significantly affect the CO2 efflux of bare soil. Using trends in historical hourly temperature data in the exponential model, the CO2 emission was estimated to be in the range 772–898 g m−2 y−1 in 2050 in the location we used. Trends in climate change are expected to have considerable effects on the processes that govern the CO2 emissions of soil.

Funder

National Research, Development and Innovation Fund of Hungary

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3