Composition and Diversity of LTR Retrotransposons in the Coffee Leaf Rust Genome (Hemileia vastatrix)

Author:

Orozco-Arias SimonORCID,Candamil Mariana S.ORCID,Jaimes Paula A.,Cristancho MarcoORCID,Tabares-Soto ReinelORCID,Guyot RomainORCID

Abstract

Coffee leaf rust is the most damaging disease for coffee cultivation around the world. It is caused by a fungal pathogen, Hemileia vastatrix (Hva), belonging to the phylum Basidiomycota. Coffee leaf rust causes significant yield losses and increases costs related to its control, with evaluated losses of USD 1–2 billion annually. It attacks both the cultivated coffee species Coffea canephora (Robusta coffee) and Coffea arabica (Arabica coffee). New races, or pathotypes, are constantly emerging with increased virulence, suggesting a rapid evolution of the pathogen. Previous genetic and genomic studies have indicated a limited nucleotide diversity of Hva despite a high genetic diversity and large genome size estimated to be ~800 Mb, with a high content of repeated sequences (>74%). Despite several genomic resources and the release of a recent partial genome sequence, the diversity of these repeated sequences and how they may impact the evolution of the leaf rust genome have not been investigated in detail. In an attempt to characterize the transposable elements within the Hva genomes, we report here new lineages of long terminal repeat (LTR) retrotransposons, called CO-HUI, Soroa, and Baco, which are classified into Gypsy, and and Labe and Mapi, which are classified as Copia. The CO-HUI and Soroa elements represent the main part of all Hva transposable elements, as well as approximately 37% of the available genome assemblies. Mapi and CO-HUI are the main expressed families in RNA-seq data. Although Soroa is the lineage showing more insertions into exons and genes, Mapi seems to be more frequently involved in co-expression with genes. All these new families are also present in the Pucciniales, suggesting that they dynamically participate in their genome evolution.

Funder

Ministry of Science, Technology, and Innovation (Minciencias) of Colombia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3