Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia

Author:

Dinić ZoranORCID,Maksimović Jelena,Stanojković-Sebić Aleksandra,Pivić Radmila

Abstract

The bioavailability of trace elements (TEs) is one of the major factors for successful plant production and environmental protection. The aim of this study was to determine the extent to which TEs are bioavailable and which of the basic soil parameters affect bioavailability. The survey included agricultural soil samples taken from 240 locations on the territory of the Republic of Serbia, where the soil analytics were carried out. On the basis of the analyzed data the prediction models were derived based on the Freundlich model, showing the dependence between trace elements (TEs) extracted using the DTPA buffer solution in relation to the trace elements extracted using an aqua regia, the organic matter content (SOM), the clay fractions content, and soil pH. On one part of the samples, the prediction models were separated on the basis of a suspension for determining the pH in H2O and 1M KCl. The model was applied for the following TEs: Mn, Ni, Pb, Zn, and Cu. The content of the pseudo total forms of TEs statistically significantly influenced the bioavailability of TEs in all prediction models for all studied elements. The pH value statistically significantly affected the bioavailability of Ni, Mn, Pb, and Cu also in all prediction models. The impact of SOM and clay varied depending on the model and TEs. Multiple linear regression showed that the prediction models for TE Cu (R2 = 0.763–0.848) were the most reliable and that the bioavailability of Cu was significantly influenced by all the studied soil parameters except clay. Reliable results were also shown by the prediction models for TE Pb, but the values of the determination coefficient and investigated parameters that influenced the bioavailability varied depending on the model. The derived models for TE Mn, Zn, and Ni were less reliable (R2 is approximately 50% or less), and the effect of the tested parameters on bioavailability varied depending on the model and TEs.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3