HMFN-FSL: Heterogeneous Metric Fusion Network-Based Few-Shot Learning for Crop Disease Recognition

Author:

Yan Wenbo1,Feng Quan1,Yang Sen1,Zhang Jianhua2,Yang Wanxia1

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The high performance of deep learning networks relies mainly on massive data. However, collecting enough samples of crop disease is impractical, which significantly limits the intelligent diagnosis of diseases. In this study, we propose Heterogeneous Metric Fusion Network-based Few-Shot Learning (HMFN-FSL), which aims to recognize crop diseases with unseen categories using only a small number of labeled samples. Specifically, CBAM (Convolutional Block Attention Module) was embedded in the feature encoders to improve the feature representation capability. Second, an improved few-shot learning network, namely HMFN-FSL, was built by fusing three metric networks (Prototypical Network, Matching Network, and DeepEMD (Differentiable Earth Mover’s Distance)) under the framework of meta-learning, which solves the problem of the insufficient accuracy of a single metric model. Finally, pre-training and meta-training strategies were optimized to improve the ability to generalize to new tasks in meta-testing. In this study, two datasets named Plantvillage and Field-PV (covering 38 categories of 14 crops and containing 50,403 and 665 images, respectively) are used for extensive comparison and ablation experiments. The results show that the HMFN-FSL proposed in this study outperforms the original metric networks and other state-of-the-art FSL methods. HMFN-FSL achieves 91.21% and 98.29% accuracy for crop disease recognition on 5way-1shot, 5way-5shot tasks on the Plantvillage dataset. The accuracy is improved by 14.86% and 3.96%, respectively, compared to the state-of-the-art method (DeepEMD) in past work. Furthermore, HMFN-FSL was still robust on the field scenes dataset (Field-PV), with average recognition accuracies of 73.80% and 85.86% on 5way-1shot, 5way-5shot tasks, respectively. In addition, domain variation and fine granularity directly affect the performance of the model. In conclusion, the few-shot method proposed in this study for crop disease recognition not only has superior performance in laboratory scenes but is also still effective in field scenes. Our results outperform the existing related works. This study provided technical references for subsequent few-shot disease recognition in complex environments in field environments.

Funder

National Natural Science Foundation of China

Industrialization Support Project from Education Department of Gansu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3