Silencing CaTPS1 Increases the Sensitivity to Low Temperature and Salt Stresses in Pepper

Author:

Gou Bingdiao1,Duan Panpan1,Wei Min1,Zhao Shufang1,Wang Yongfu1,Yang Nan1,Zhang Gaoyuan1,Wei Bingqiang1

Affiliation:

1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Trehalose, as a non-reductive disaccharide, plays a vital role in plant growth and development and resistance to abiotic stress. Trehalose-6-phosphate synthase (TPS) is a key enzyme in the synthesis mechanism of trehalose and TPS1 genes play a crucial role in the response to abiotic stress in plants. However, it has rarely been reported that CaTPS1 responds to cold and salt stresses in pepper. To verify the function of CaTPS1 in response to cold and salt stresses, CaTPS1 was silenced by virus-induced gene silencing (VIGS). Subsequently, the expressions of CaTPS1, plant morphology and some physiological indexes were analyzed after cold and salt stresses in pepper. The results showed that the expression of CaTPS1 was significantly lower in CaTPS1-silenced (pTRV2-CaTPS1) plant than that in the non-VIGS (CK) and negative control (PTRV2-00) plants. The parameters of response to cold and salt stresses have changed accordingly. The chlorophyll content decreased, while the trehalose content, peroxidase (POD) activity, catalase (CAT) activity and ascorbate peroxidase (APX) activity increased in all treatments. However, these parameters of response to cold and salt stresses were significantly lower in pTRV2-CaTPS1 plant than in CK and PTRV2-00 plants. This study suggested that CaTPS1 was involved in the response to cold and salt stresses in pepper.

Funder

National Natural Science Foundation of China

Primary Research & Development Plan of Gansu Province, China

Lanzhou Talent Introduction Project

Gansu Agricultural University Youth Mentor Support Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3