Use of Wild Relatives in Durum Wheat (Triticum turgidum L. var. durum Desf.) Breeding Program: Adaptation and Stability in Context of Contrasting Environments in Tunisia

Author:

Ayed Sourour,Bouhaouel ImenORCID,Othmani Afef,Bassi Filippo MariaORCID

Abstract

In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to explore the GEI pattern and yield stability of 24 promising durum wheat lines, selected by ICARDA in several African countries (seven elites, four commercial varieties, and 13 durum wheat wide crosses, generated by hybridization of elites and Triticum dicoccoides Koern. ex Schweinf., Triticum araraticum Jakubz, and Aegilops speltoides Tausch) against a Tunisian local check variety ‘Salim’. Yield assessment was conducted across six environments under rainfed conditions, at the field station of Kef in a semi-arid region during four cropping seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) and in a sub-humid region at the station of Beja during two cropping seasons (2015–2016 and 2018–2019). The analysis of variance showed that the environment is the main source of variation of grain yield (72.05%), followed by the interaction environments × genotypes (25.33%) and genotypes (2.62%). The genotype × genotype by environment model (PC) based on grain yield identified a mega-environment including Kef (2016–2017 and 2017–2018) and Beja (2015–2016 and 2018–2019) and elite line 22 as a widely adapted genotype. Combined analysis, computed using the average grain yield of lines and the yield stability wide adaptation index (AWAI), showed that elite lines 9 and 23 (2.41 and 2.34 t·ha−1, respectively), and wild relative-derived lines, 5, 1, and 10 (2.37, 2.31, and 2.28 t·ha−1, respectively) were more stable and better yielding than the national reference (2.21 t·ha−1). This finding supports the good yield potential of wild relative-derived lines. The five selections are recommended to be developed in multi-environments in several regions of Tunisia, especially in semi-arid area.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference50 articles.

1. Global Durum Outlook 2017 http://www.italmopa.com/wp-content/uploads/2017/05/144_all_1.pdf.

2. Canada: Outlook for Principal Field Crops https://agriculture.canada.ca/en/canadas-agriculture-sectors/crops/reports-and-statistics-data-canadian-principal-field-crops

3. Are grain markets in Niger driven by speculation?

4. Durum wheat in the Mediterranean Rim: historical evolution and genetic resources

5. Response of durum wheat varieties to water in semiarid Algeria;Merouche;Afr. J. Agric. Res.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3