Response of Evapotranspiration, Photosynthetic Characteristics and Yield of Soybeans to Groundwater Depth

Author:

Zhu Zhenchuang1ORCID,Chen Zhijun2,Wang Zhe1,Shen Ruxuan1,Sun Shijun1ORCID

Affiliation:

1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China

2. China Agricultural Water Research Center, China Agricultural University, Beijing 100083, China

Abstract

To clarify the physiological mechanism of different groundwater depths affecting soybean evapotranspiration, photosynthetic characteristics and yield, a field experiment with four groundwater depth levels (1 m (D1), 2 m (D2), 3 m (D3) and 4 m (D4)) was conducted through the groundwater simulation system in 2021 and 2022. In this study, a quantitative analysis was conducted on the groundwater recharge and irrigation water demand and evapotranspiration (ET) of soybean fields with different treatments, and the effects of different treatments on soybean leaf area index (LAI), chlorophyll content index (SPAD), intercepted photosynthetic active radiation (IPAR), photosynthetic gas exchange parameters, dry matter accumulation (DMA) and yield were explored. The results showed the following: (1) Groundwater depth affected soybean ET and the source of ET. With the increase in groundwater depth, groundwater recharge and its contribution to ET gradually decreased, but the amount of irrigation required gradually increased, resulting in the ET as D1 > D4 > D2 > D3. (2) Soybean LAI, SPAD and IPAR were significantly affected by the different groundwater depths, of which the D1 treatment always maintained the maximum, followed by the D4 treatment, and the D3 treatment was the minimum. The photosynthetic gas exchange parameters under different treatments changed synergistically, showing significant differences in the flowering and podding stages, notably D1 > D4 > D2 > D3. Soybean DMA and yield first decreased and then increased with the increase in groundwater depth, and the average DMA and yield under the D1 treatment increased by 27.71%, 46.80% and 22.82% and 20.29%, 29.91% and 12.83% in the two years, respectively, compared to the D2, D3 and D4 treatments. (3) The structural equation model demonstrated that the groundwater depth indirectly affected the growth of soybean leaf area by affecting groundwater recharge, which in turn regulated soybean ET and photosynthetic capacity and ultimately affected DMA and yield. The above results showed that in the case of shallow groundwater depth (D1), the largest groundwater recharge promoted the growth of soybean leaf area and chlorophyll synthesis and increased the absorption and utilization of solar radiation. And it improved the leaf stomata conditions, accelerated the gas exchange between the plant and atmosphere, enhanced the photosynthetic production capacity and ET and achieved maximum DMA and yield. Soybean leaf growth and photosynthesis diminish with the increase in groundwater depth. In the case of deep groundwater depth (D4), the maximum irrigation improved the growth and photosynthetic performance of soybean leaves, which was favorable to ET, and ultimately led to increases in DMA and yield.

Funder

Liaoning Province Applied Basic Research Program Project

Liaoning Province Scientific Research Funding Project

National 13th Five Year Plan Key R&D Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3