Impact of Chelated or Inorganic Manganese and Zinc Applications in Closed Hydroponic Bean Crops on Growth, Yield, Photosynthesis, and Nutrient Uptake

Author:

Neocleous DamianosORCID,Nikolaou GeorgiosORCID,Ntatsi GeorgiaORCID,Savvas DimitriosORCID

Abstract

In this study, we investigated the effect of individual and combined applications of manganese (Mn) and zinc (Zn) chelates on common bean grown in hydroponics (nutrient film technique—NFT) on physiological and agronomical responses. Inorganic sulphate forms of Mn and Zn were compared to their synthetic chelate forms, in the replenishment nutrient solution (RNS). Nutrient (N, P, K, Ca, Mg, Fe, Mn, Zn and Cu) to water uptake ratios (termed uptake concentrations; UCs), growth, pods yield and quality, photosynthetic parameters and tissue nutrient status were evaluated in different cropping seasons (spring-summer and autumn-winter crops). Mean UCs of nutrients ranged as follows: 10.1–12.4 (N), 0.8–1.0 (P), 5.2–5.6 (K), 1.8–2.2 (Ca), 0.9–1.0 (Mg) mmol L−1; 12.2–13.4 (Fe), 5.2–5.6 (Mn), 4.4–4.9 (Zn), 0.9–1.0 (Cu) μmol L−1. Tissue macronutrient status remained unaffected in both seasons, however, Mn chelates in the RNS affected Fe within plants. Pod yield and quality, growth, photosynthesis and water uptake did not differ among treatments; however, seasonal variations are presented. Results suggest that the chelate forms of Mn and/or Zn in the refill solution for NFT-grown beans do not lead to any changes, adding superiority in the yield, photosynthesis, and nutritional status of the crops compared to their mineral forms.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference46 articles.

1. Plant Nutrition of Greenhouse Crops

2. Application of soilless culture technologies in the modern greenhouse industry – A review

3. Significance of Soilless Culture in Agriculture;Raviv,2008

4. The Water-Culture Method for Growing Plants without Soil;Hoagland,1950

5. Nutrient Solutions for Vegetables and Flowers Grown in Water or Substrates;Sonneveld,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3