Melatonin Mediates the Regulation of Morphological and Anatomical Traits in Carex leucochlora under Continuous Salt Stress

Author:

Ren Zhixin,Shi Jiannan,Guo Ao,Wang YeORCID,Fan Xifeng,Li Runzhi,Yu Chunxin,Peng Zhen,Gao Yuerong,Liu Ziyan,Duan Liusheng

Abstract

Soil salinity is one of the most critical factors limiting plant growth and development. Carex leucochlora is an important turfgrass species with a wide distribution in northern China that is highly sensitive to salt stress, which impairs its development. Recently, melatonin has emerged as a nontoxic biomolecule that regulates growth and enhances salt tolerance in plants. In this study, the mechanism of melatonin’s regulation of plant growth and anatomical characteristics in C. leucochlora seedlings under continuous salt stress was explored. Our results indicated that salt stress strongly suppressed plant growth and leaf cell activity, inhibited root morphology and root activity, and negatively affected leaf and root anatomic structures in the seedlings. Conversely, melatonin (150 μmol L−1) pretreatment improved the detrimental effect of salt stress by restoring the morphology of the leaf, alleviating damage to the cell membrane, improving root activity, and altering the root architecture and plant growth attributes. Moreover, after 12 days of salt stress, anatomical observations of the leaf showed that the thickness of the leaf blade, vascular bundle area of the leaf main vein, vesicular cell area, thickness of the upper epidermis, and thickness of the lower epidermis were increased by 30.55, 15.63, 12.60, 16.76 and 27.53%, respectively, with melatonin under salinity. Melatonin treatment also showed an increase of 5.91, 7.59, 15.57, and 20.51% in epidermal thickness, vascular cylinder diameter, xylem vessel diameter, and pith cell diameter, respectively, compared with salt stress after 12 days. These results suggest that melatonin alleviated salt stress through augmenting seedling growth, leaf cell activity, and root characteristics, maintained the stability of anatomic traits to maintain chloroplast cell homeostasis, and also protected the vascular tissues to promote the radial transport of water and ions in the C. leucochlora seedlings. These modifications induced by the exogenous application of melatonin may help C. leucochlora to acclimate successfully to saline soils.

Funder

Key project of Science and Technology Plan of Beijing Education Commission

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3