Response of Nitrifier and Denitrifier Abundance to Salinity Gradients in Agricultural Soils at the Yellow River Estuary

Author:

Huang Daqing,Li Xiang,Luo Xuesong

Abstract

Salinization is considered a threat to agricultural soil and decreases crop yield worldwide. Nitrification and denitrification are the core processes of soil N-cycle. However, the response of nitrifiers and denitrifiers to salinity in agricultural soils remains ambiguous. The study aimed to explore the effect of salinity on nitrifiers and denitrifiers communities in agricultural soils along a naturally occurring salinity gradient. The effects of salinity on the abundance, composition, and interactions of nitrifiers and denitrifiers in surface soils were investigated. The abundance of nitrifiers significantly decreased in response to the increase in salinity. Ammonia-oxidizing archaea (AOA) were more susceptible to salinity elevation than ammonia-oxidizing bacteria (AOB). Nitrospira and Nitrobacter showed a similar trend to the salinity gradient, but the relative abundance of Nitrobacter was increased in the saline soils. High salinity decreased the abundance of napA and nirK, but had no significant effect on other marker genes for denitrification. Besides electrical conductivity, total sulfur (TS)+available potassium (AK) and TN+TS+C/N+total phosphorus (TP)+AK significantly explained the variation in denitrifier and nitrifier communities. We also found that high salinity decreased the connections between different N functional genes. These results implied the alteration of the nitrogen cycling community by high salinity mainly through decreasing AOA, NOB, and some denitrifiers with nitrate or nitrite reduction potentials and weakening the connectivity between nitrogen cycling drivers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3