Feasibility of Detecting Sweet Potato (Ipomoea batatas) Virus Disease from High-Resolution Imagery in the Field Using a Deep Learning Framework

Author:

Zeng Fanguo1ORCID,Ding Ziyu1ORCID,Song Qingkui1ORCID,Xiao Jiayi1ORCID,Zheng Jianyu1ORCID,Li Haifeng1ORCID,Luo Zhongxia2ORCID,Wang Zhangying2,Yue Xuejun1,Huang Lifei2ORCID

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China

2. Crops Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China

Abstract

The sweet potato is an essential food and economic crop that is often threatened by the devastating sweet potato virus disease (SPVD), especially in developing countries. Traditional laboratory-based direct detection methods and field scouting are commonly used to rapidly detect SPVD. However, these molecular-based methods are costly and disruptive, while field scouting is subjective, labor-intensive, and time-consuming. In this study, we propose a deep learning-based object detection framework to assess the feasibility of detecting SPVD from ground and aerial high-resolution images. We proposed a novel object detector called SPVDet, as well as a lightweight version called SPVDet-Nano, using a single-level feature. These detectors were prototyped based on a small-scale publicly available benchmark dataset (PASCAL VOC 2012) and compared to mainstream feature pyramid object detectors using a leading large-scale publicly available benchmark dataset (MS COCO 2017). The learned model weights from this dataset were then transferred to fine-tune the detectors and directly analyze our self-made SPVD dataset encompassing one category and 1074 objects, incorporating the slicing aided hyper inference (SAHI) technology. The results showed that SPVDet outperformed both its single-level counterparts and several mainstream feature pyramid detectors. Furthermore, the introduction of SAHI techniques significantly improved the detection accuracy of SPVDet by 14% in terms of mean average precision (mAP) in both ground and aerial images, and yielded the best detection accuracy of 78.1% from close-up perspectives. These findings demonstrate the feasibility of detecting SPVD from ground and unmanned aerial vehicle (UAV) high-resolution images using the deep learning-based SPVDet object detector proposed here. They also have great implications for broader applications in high-throughput phenotyping of sweet potatoes under biotic stresses, which could accelerate the screening process for genetic resistance against SPVD in plant breeding and provide timely decision support for production management.

Funder

earmarked fund for CARS-10-Sweetpotato, the Key-Area Research and Development Program of Guangdong Province

Sweetpotato Potato Innovation Team of Modern Agricultural Industry Technology System in Guangdong Province

Guangzhou Science and Technology Plan Project

Guangdong Province Rural Science and Technology Special Commissioner Project for Towns and Villages and Villages in part under the Grant of Yuekehan Agricultural Letter [2021]

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3