Salt Addition Mitigate Mortality Risk and Prolong Survival of Robinia pseudoacacia Subjected to Drought Stress

Author:

Fan Yanli1,Wang Jianlong1,Yan Meifang1,Wang Xia1,Du Guangyuan2,Li Huijie3ORCID,Li Min1ORCID,Si Bingcheng134

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China

2. College of Science, Northwest A&F University, Xianyang 712100, China

3. College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China

4. Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada

Abstract

Global climate change is increasing the frequency and intensity of drought and salt stress worldwide, with profound impacts on tree growth and survival. However, the response of plant hydraulic transport and carbon balance to combined drought and salt stress remains unclear. This study investigated the leaf physiological traits, stem xylem hydraulic traits, and nonstructural carbohydrate concentration of Robinia pseudoacacia seedlings under normal irrigation treatment (CK, freshwater at 80–100% FC); salt stress treatment (SS, 0.3% soil salinity with freshwater); drought stress treatment (DS, withholding irrigation); and combined drought and salt treatments (SDS, 0.3% soil salinity withholding irrigation). Our results showed that the leaf physiological traits responded differently to different treatments. DS and SDS treatment significantly decreased leaf water potential and stomatal conductance, while SS treatment did not. DS treatment increased stomatal density but decreased stomatal area to adapt to water deficit, while SS and SDS treatment decreased stomatal length or width. In terms of xylem hydraulic traits, SS, DS and SDS significantly decreased xylem specific hydraulic conductivity by 47%, 42% and 49%, while percent loss of conductivity (PLC) significantly increased by 81% and 62% in DS and SDS, but the PLC of SS was not increased significantly. Additionally, net photosynthetic rate and transpiration rate significantly decreased in SS, DS and SDS, while leaf water use efficiency significantly increased. The chlorophyll content index and maximum light quantum efficiency of photosystem II were also decreased. For nonstructural carbohydrate, the soluble sugars, starch and total non-structural carbohydrate were significantly decreased in DS in specific tissues, showing reductions of 42%, 68%, and 56% in leaves, 69%, 61%, and 62% in stem, and 30%, 59%, and 57% in root. Our findings provide evidence that salt addition alleviated drought stress by improving hydraulic traits and carbohydrate reserves, which is expected to contribute to predicting future vegetation dynamics under climate change.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Major Scientific and Technological Innovation Projects of Shandong Key R & D Plan

National Natural Science Foundation of China

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3