The Effect of Glucosinolates on the Growth and Development of Helicoverpa armigera Larvae and the Expression of Midgut Sulfatase Genes

Author:

Li Xue,Cai Fan,Kuerban Guli,Zhang Shaohui,Li Chaoyong,Zhao Ying,Jin Lin,Ma XiaoliORCID

Abstract

The plant–pest interaction and its mechanisms are a novel research direction for pest control. They provide molecular targets for developing new pesticides and targeted control measures to control insect herbivores. Glucosinolate is a large family of secondary substances found in cruciferous plants that are harmful to herbivorous insects. Specialist herbivores have developed specific anti-defense genes and detoxifying mechanisms against glucosinolate from the host plant, but how generalist herbivores respond to glucosinolate at the molecular level is unknown. In this study, we investigated the effects of different glucosinolate concentrations on the growth and development of Helicoverpa armigera. Moreover, the expression of sulfatase genes (HaSulfs) was also checked following exposure to glucosinolate concentrations. The developmental duration of larvae and pre-pupa of H. armigera was significantly increased by 14.79–25.03% after feeding glucosinolate compared to the control. Quantitative Real-Time PCR (RT-qPCR) was carried out to analyze the expression of HaSulf family genes in the midgut of fifth instar larvae of H. armigera. The results showed that the upregulated expression patterns of HaSulf family genes were diversified after feeding at different concentrations. The expression level of HaSulf was detected with the HaSulf antibody. Only the glucosinolate-fed larvae had a visible target band and were mainly distributed in the midgut wall. Taken together, glucosinolate can significantly affect the growth and development of H. armigera larvae. It can induce the expression of HaSulf in the midgut of H. armigera at gene and protein levels. This study could be useful to understand the development of plant-derived insecticides resistance in H. armigera.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3